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1. SUMMARY

This final report details progress made during a three-year project that is jointly supported by AFOSR
and ONR, administered as a grant to Rutgers University through ONR, covering the period 5/1/90
- 4/30/93. The primary goals of the effort are to create methods for designing digital optical
computers, and to investigate aspects of optical interconnection that influence the design process.
The emphasis is on the Bell Labs style of architecture, in which arrays of optical logic gates are
interconnected in free space with regular patterns at the gate-level. Other approaches are also
explored that make use of hybrid technology (smart pixels), irregular interconnects, and reconfig-
urable interconnects. DISTRIP BtS-T1 A
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Major accomplishments for the project include: (1) the development of novel automated layout
methods for regularly interconnected optical circuits; (2) the development of an interactive design
tool and supporting methods for designing circuits interactively using both regular and irregular
interconnects; (3) the creation of two methods of bypassing faults in optical device arrays; (4) the
discovery and characterization of functional locality in ordinary computer programs, which is
applied to hardware caching; (5) the creation of a trade-off study involving optical interconnects and
architectural complexity; and (6) the development of a novel method of optical spot array generation
and interconnection.

2. DESIGN TOOLS AND ALGORITHMS FOR DIGITAL OPTICAL CIRCUIT DESIGN

The effort began with the anticipation that all-optical computing, in which the gate-level switching
devices have optical inputs and outputs, would become a practical approach. The goal was to use
photonics at all levels in a computer, from the gate level up to the system level. During the course
of the effort, we learned that an all-optical approach may be practical in a laboratory experiment
(which we are in the process of demonstrating, see Technology Transfer in Section 9). For a full-scale
system, however, an all-optical approach appears to introduce a cost and a performance limitation
that is much greater than the potentially small additional cost of using an opto-electronic approach.
We have maintained an all-optical computing model throughout the effort, however, for two major
reasons: (1) the circuit layout problems are similar for both all-optical and opto-electronic ap-
proaches; and (2) a gate-level optical approach may be appropriate when all of the logic gates need
to be individually addressed. Gate-level optical computing is important for reconfigurable compo-
nent applications, such as in the area of rapid prototyping, and in the novel area of hardware
caching which we describe in Section 4.

2.1. The Model
A simplified form of the optical computing model supported by the effort [ 11 is shown in Figure 1,
which consists of arrays of optical logic gates interconnected in free space. The more general form
of the model includes greater complexity in the logic arrays, such as electronic processing elements
with optical I/O ports (such as smart pixels). For the simplified form, binary I's and O's are
represented as intensities of light beams. The interconnects have a regular pattern such as a perfect
shuffle or a crossover [21. This type of interconnect is used experimentally in a number of AT&T
SEED based optical processor testbeds, and also in an S-SEED system under development at
Optivision, a microlaser based system at Siemens, and an S-SEED system that we are jointly
developing with Air Force personnel in the Photonics Center at Rome Laboratory (see Section 9).
The reason for using regular interconnects at the gate level is to allow the beams to share the same
field of a single lens. If we choose to use irregular interconnects instead, then each channel requires ,r
a separate imaging system. This can be achieved through holography or through micro-optics 7'
techniques, although the small diameters of the resulting lenses limit propagation distance [31 due F]
to diffractive coupling between neighboring channels. The two extreme cases that are characterized F3
by trade-offs between regular and irregular interconnects do not necessarily exclude one another. We-
have performed an extensive analysis of this issue (see Section 5) and have found that a combination -
of the regular and irregular approaches, which are loosely representative of space-invariant and
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Figure 1: The optical computing model.

space-variant approaches, respectively, may support dense packing of devices while balancing the
limitations imposed by practical realizations.

Our efforts on layout algorithms have focused primarily on the more restrictive regular approach,
however, since the boundary between regular and irregular interconnects is not clear. A practical
system may contain a mixture of regular and irregular interconnects, in which case the regular
approach is appropriate for the regular interconnects, and conventional electronic layout schemes
may be suitable for the irregular interconnects.

The optical computing model shown in Figure 1 is composed of alternating arrays of optical logic
gates and free-space interconnects. Masks in the image planes block light at selected locations and
customize the interconnects to perform specific logic functions. There is no need to use masks if the
light sources are independently controlled, such as through electrically driven microlasers, or if a
beam-steering approach is used, which is addressed in Section 4. The system is fed back onto itself
and an input channel and an output channel are provided. Feedback is imaged with a vertical shift
so that data spiral through the system, allowing a different section of each mask to be used on each
pass. Optical signals travel orthogonal to the device substrates.

2.2. Programmable Logic Array (PLA) Generation Software
Medium scale integration (MSI) components serve as the lowest level building blocks of conven-
tional digital computers, other than the discrete logic gates of which they are composed. Examples
of digital circuits of MSI complexity are decoders, multiplexers, arithmetic/logic units (ALUs), and
programmable logic arrays (PLAs). We have developed algorithms for designing MSI circuits that
map onto the model shown in Figure 1. The algorithms translate low level behavioral descriptions
of simple circuits specified in the form of truth tables into optical gate layouts of MSI complexity.
The software we created that implements the algorithms includes special capabilities that allow the



4

Inputs Outputs x x' y y'
X~ ~ ~ ~ ~~! X ,[-"]' xXyý =AND gatelx x"y y" x'y" x'y xy' xy, i45 W ~ ~ g t

01 00 1 0 0 0
0100 0 1 0 0
1 0 1 1 0 0 1 0
1 0 1 1 0 0 0 1

L_._. L_._. L.-_.- L-.--

xy x'y xy' x'y'

Figure 2: AND stage of programmable logic array (PLA) generated by the decoder tool.

computer designer to specify permutations of inputs and outputs, which helps tile subcircuits into
complex configurations.

A sample layout created by the decoder tool is shown in Figure 2. The shaded boxes represent optical
logic gates. Inputs enter the circuit in the top row and outputs are generated in the bottom row. The
variables x, y, and their complements x'andy'are the input variables. Logically ANDed combinations
of variables (called minterms) are produced at the bottom of the circuit. Solid lines represent optical
paths that are enabled, and lightly shaded lines indicate disabled connections that correspond to either
opaque areas of fixed masks, or correspond to some other method of beam-blocking or beam-
steering. The decoder tool deals with both functional behavior and physical layout simultaneously.
These two areas are normally decoupled in digital electronic designs, but here, we need to consider
them together.

The interconnection pattern shown in Figure 2 is a banyan, but perfect shuffle and crossover
interconnection patterns are also supported. Mappings to other topologically equivalent intercon-
nects are not difficult to automate, but mappings to interconnects that are not topologically equivalent
must be handled in some other way, such as interactively, which is addressed in Section 2.3.

A decoder translates a logical encoding into a spatial location. In Figure 2, the binary encodings on
the input lines x, x',y, andy'determine which of the output minterms xy, x'y, xy', orx'y'will be enabled
(that is, set to logical 1). Decoders are used in the addressing structures of random access memories
(RAMs) and in more complex MSI circuits such as PLAs.

A PLA consists of a customizable AND matrix (a simple decoder here) followed by a customizable
OR matrix. For an electronic implementation, a programmable fuse is placed at each crosspoint in
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Figure 3: Circuit layout for three functions and their complements generated by the PLA tool.

the AND and OR matrices. The matrices are then customized for specific functions by disabling
fuses. For an optical implementation, a method of beam-blocking or beam-steering can be used.

PLAs are a workhorse component that are used throughout digital electronics. An advantage of using
PLAs in electronics is that there are only a few inputs and outputs (pins), while there is a large number
of logic gates between the inputs and outputs. Since free-space optics supports parallel access to the
optical logic devices, the pin argument does not carry over to the optical domain. However, PLAs
are still very important because they can efficiently implement low-level functions.

The PLA tool makes use of the decoder tool in mapping a set of functions specified as truth tables
into a layout. Consider the truth table shown in Figure 3, which describes the functions flx,y,z),
g(x,y,z), h(xy,z) and their explicitly generated complements. Functionf is the addition of x, y, and
the carry-in z, function g is the carry generated in computingf, and h is the exclusive-OR (XOR) of
x and y. Figure 3 also shows a layout of optical logic gates that implements the functionsf, g, and h
using a banyan interconnection topology. The PLA tool generates the layout automatically from a
data file description of the truth table. Stages 0 - 3 represent logic gates in the top rows of stages
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0 - 3 in the model shown in Figure 1. Stages 4 - 7 would then be mapped onto the second rows of
stages 0- 3 in the model shown in Figure 1. The model shows a crossover interconnect, but the PLA
uses a banyan. Mappings among these interconnects and the perfect shuffle are trivial, and the
software handles all three interconnects.

The fact that we can automatically generate a layout for any three functions and their complements
(a total of six functions) for an arbitrarily sized PLA is an important accomplishment, especially
considering that the depth is near-optimal regardless of the interconnection pattern [41, but a problem
with strictly following the optical computing model shown in Figure 1 is that the connections are
determined by the complexity of the optics, rather than by the complexity of the circuit design. By
maintaining strict regularity at the gate level, the only flexibility left to the designer is in choosing
which connections to disable, and where to place the inputs and outputs. We have managed the circuit
depth issue reasonable well, and even the circuit breadth is good in terms of complexity theory [4],
but overall gate count is high, typically two to eight times greater than if a completely irregular
interconnect is supported.

Although we have created algorithms and software to automatically generate layouts for MSI
circuits, good algorithms for generating general higher level circuits do not exist. There are several
circuit design situations we have encountered for which the only algorithms we can envision employ
an exhaustive search of all possible permutations of enabled and disabled connections. This is a
prohibitively time-consuming approach. For situations such as this, in which the essence of a good
design cannot be captured by an algorithm, a better approach is to allow an expert to create a design
interactively. Although complete automation may not be practical for these larger circuits, partial
automation turns out to be practical, which we describe in the next section.

2.3. Interactive Design Software
We created an X-windows Optical Programmable Interactive Design tool (XOPID) that uses the X
graphical interface. The XOPID tool allows logic gates to have fan-ins and fan-outs that vary, and
allows circuits to have irregular interconnections between gates and between higher level structures
such as PLAs. These features allow us to study the trade-offs involved when fan-in/fan-out values
higher than two are used and when connections are not constrained to being topologically equivalent
to the perfect shuffle, banyan, or crossover. Other issues we have studied with XOPID include
functional decomposition and PLA tiling.

In order to manage the complexity of circuit design for regular interconnects, the interactive design
tool makes use of a collision detection strategy that guides the design process so that signals do not
collide as a result of using common paths, which is a situation commonly referred to as blocking in
switching applications. Collision detection is a significant issue here because the physical circuit
layouts and their functional behaviors are tightly coupled. The theory behind the method is described
in Ref. [5].

In more detail, XOPID is a menu-driven tool that allows the user to draw and manipulate digital
circuits interactively in an X window. The user interface to XOPID is shown in Figure 4. Five
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Figure 4: The user interface to XOPID. Shaded horizontal and vertical bars serve dualfunctions as
scrollbars and as indicators of the virtual drawing area.

vertically stacked windows comprise the display area: the command window, the file-label
window, the main drawing window, the help window, and the message window. The command
window contains control buttons that the user selects for different circuit manipulation operations.
When a button is selected, it is highlighted and a brief message describing its function is displayed
in the help window. The main drawing window displays the circuit that is being designed. The virtual
drawing area is larger than the main drawing window, which displays a portion of the virtual drawing
area. The main drawing window can be moved over the virtual drawing area by using the scrollbars,
which also indicate the relative sizes of the main drawing window and the virtual drawing area. If
the execution of a user command results in an error or some other exceptional behavior, a message
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is displayed in the message wind •w. The file-label window displays the name of the circuit being
manipulated.

A synopsis of the functions available to the user is given below. Any command that ends with an
ellipsis (...) indicates that a dialog box appears that prompts the user for more information. A
complete description of XOPID is given in the user manual [6].

NEW Clears the current circuit.

LOAD... Prompts the user to specify a . cir file (a circuit file stored in XOPID format, with the
filename extension '. cir'). The circuit described in this file then becomes the current circuit.
If the specified file does not exist, an empty circuit becomes the current circuit.

MERGE... Prompts the user to specify a . c i r file. The circuit in this file is merged into the current
circuit at a position that the user selects with the mouse. The merge operation fails if a circuit
overlap situation exists.

SAVE Saves the current circuit in the file named by extending the filename displayed in the file-
label window with a. cir extension.

SAVE AS... Prompts the user to specify a . c i r file. The current circuit is then saved in this file.

PRINT Prints the current circuit in PostScript format to the file named by extending the filename
displayed in the file-label window with a . ps extension.

REFRESH Redraws the circuit on the bitmap that is displayed in the main drawing window.

FLIP Waits for the user to specify a rectangular region by depressing the left mouse button on the
upper left comer of the region, dragging the pointer to the lower right comer of the region and
then releasing the button. A copy is made of the sub-circuit corresponding to the user-specified
rectangular region, which is flipped along a vertical axis passing through the center of the region
and stored in a file named. Clipboard. cir, from where it can be pasted using the PASTE
option. This operation is useful in building crossover circuits from smaller crossover circuits,
which are symmetric about a vertical axis.

COPY Similar to FLIP except that the sub-circuit is not flipped before it is stored in
.Clipboard. cir.

CUT Similar to COPY but deletes the sub-circuit corresponding to the user-specified region from
the current circuit.
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PASTE Waits for the user to specify a position with the mouse, which is where the upper left corner
of the circuit stored in Clipboard. cir is merged into the current circuit, providing the
operation does not result in an overlap.

QUIT Exit from XOPID, discarding the current circuit.

OR/NOR/AND/NAND Waits for the user to specify a rectangular region (as described in FLIP) and
fills the rectangular region with logic gates of the type displayed in the help window. If a gate
already exists in the region, its type is changed to that displayed in the help window. The user can
toggle through the gate types by repeatedly selecting this command button.

BUTTERFLY/SHUFFLE/CROSSOVER Waits for the user to specify a rectangular region (as
described in FLIP) and inserts connections corresponding to the current interconnection pattern
between gates in this region. The user can toggle through the interconnection patterns by
repeatedly selecting this command button. Note: the terms "butterfly" and "banyan" are used
interchangeably here.

CONNECT/DISCONNECT Waits for the user to depress the left mouse button over a gate, drag
the pointer till it is over another gate, and then release the button. If the CONNECT option is
active, a new connection is made between an output of the first gate and an input of the second
gate if one does not already exist. If the DISCONNECT option is active, the existing connection,
if any, between an output of the first gate and an input of the second is removed. The operation
is performed between successive rows only. The active option is displayed in the help-window.
The user toggles between the two options by selecting this command button.

MASK/UNMASK Waits for the user to specify two gates (as described in CONNECT/DISCON-
NECT). If the UNMASK option is active, a path of connections, if one exists, leading from the
output of the first gate to the input of the second gate is found and all connections on this path
are unmasked (that is, connections are enabled). If the MASK option is active, all connections
on the path are masked (disabled). The active option is displayed in the help window. The user
toggles between the two options by selecting this command button.

SET 0/SET 1/UNSET Waits for the user to select a gate. If the SET 0 option is active, the output
of the selected gate is set to 0. If the SET I option is active, the output of the selected gate is set
to 1. If the UNSET option is active, any Boolean value to which the output of the selected gate
had been tied is removed. The active option is displayed in the help window. The user toggles
between the options by selecting this command button.

NAME... Prompts the user to specify a name for a gate and waits for the user to select a gate. The
output signal of the selected gate is then given the specified name. If a name is not specified, and
if the output of the gate already has a name, that name is removed.



10

asab c caabb

a b c XoX 1 Xlx 2 -2 x 3 -x3x 4 -4 '

001 01 1001 1010 1"
0 0 0 0 1 1 0 0 1 1 0 1 0 "

0 1 1 0 1 1 0O1 0 1 O0 0 1•

S1 0 1 0 1 0 1 0 1 0 1 0 1

10 0 0101010110
111 1010100101 [
110 1010100110 0 

, 
0

Functions Operations

x0 =ab -Xo0= AND/NAND

xi =a+b Xi =a+b OR/NOR

x2 = b X2 Buffer/NOT 77
x3 = a = a NOT/Buffer

x4 = 7 + ac x4 = ýib + a XNOR/XOR

X0•-X X 1 X1  X2 X2  X3 X3  X4 X4

El =ORgate U =NORgate

Figure 5: A truth table description of JO functions, and the corresponding manually designed PLA.

PROBE Waits for the user to select a gate. The output value generated at the gate and the Boolean
expression representing the gate's output are displayed in the message window.

DELETE Waits for the user to specify a rectangular region as described in FLIP. All gates that lie
within this region are deleted from the current circuit as well as all connections that are incident
on any gate in the region.

We have used XOPID for designing PLAs. Although we have fully automated the PLA tool for this
task, we have found that more sophisticated PLA designs can be created interactively. The circuit
layout shown in Figure 5 implements 10 functions (five functions and their explicit complements).
The PLA tool guarantees a layout for any three functions and their complements (a total of six
functions), in a 16 x 8 area for three variables, but the PLA tool is not capable of implementing five
functions and their complements in the same area. The solution shown in Figure 5 was obtained
manually. The approach used in designing this circuit was to start first by automatically generating
the top half of the circuit using the PLA tool, which generates all of the minterms for the input
variables, and then working from the bottom of the circuit (where thexi are) up to the minterms. This
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is a rule of thumb approach that works well in practice. We have not found a good method of
automating the approach because some permutation is needed in repositioning the minterms (a
permutation tool is described in Section 2.6). The significance of this example is that it shows that
partial automation, coupled with a good designer, can produce better designs in this domain than can
be achieved with full automation.

2.4. Increasing Fan-In and Fan-Out
A potential pitfall with using regular interconnects at the gate level is that a high gate count is
incurred, and the circuits are deeper than their electronic counterparts. Circuit depth and gate count
can be improved, however, by increasing fan-in and fan-out.

Consider again the circuit shown in Figure 3. The circuit is 16 logic gates wide by 8 levels deep, giving
a total gate count of 16 x 8 = 128 logic gates. If we increase the fan-in and fan-out from 2 to 4, then
the depth decreases from 8 to 4, which results in a circuit that has only half the latency of the original
circuit and a gate count of 16 x 4 = 64 logic gates, as shown in Figure 6. The circuit is derived from
the circuit shown in Figure 3 by collapsing interconnection stages 0 and I from Figure 3 into Stage
0 of Figure 6, and correspondingly stages 2 and 3 into stage 1, stages 4 and 5 into stage 2, and stages
6 and 7 into stage 3.

In theory, any number of Boolean functions can be implemented in just two stages, given arbitrary
fan-in and fan-out. In practice, fan-in and fan-out are limited to small numbers, especially for high
speed logic, regardless of the technology. The fact that most of our examples are given for fan-ins
and fan-outs of two is only due to our sensitivity to the limitations of logic devices we have been
working with, such as S-SEEDs, and is in no way an indication of a limitation to our design methods.

Interconnection
= OR gate Inputs I X y Y z - Stage

NRORgate

x y y z z f fg g hh

0 10 10 1 0 1 0101 1
010 1 10 100101
0 1 100 1 1001 10

011 0 1 0 01 1010

1 001 01 1 00110
1001 10 0 110 10

1 0 1 0 0 1 01 1 0 0 1
101010 1 01001

f(x,y,z) = xrz + iyi + xyi + xyz

g(x,yz) = iyz + xyz + xyi + xyz
h(x,y,z) = iyl + fyz + Xzi + X9z Outputs f / h

Figure 6: An alternative implementation of the circuit shown in Figure 3, using afan-in andfan-out
of 4.
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The circuit shown in Figure 6 shows that an extension of the design techniques to higher fan-ins and
fan-outs is trivial, and in fact, fan-ins and fan-outs can bz unevenly matched while still obtaining a
significantly improved circuit. A 75% reduction in circuit depth and gate count would be obtained
for a fan-in of 2 and a fan-out of 4, for instance, rather than the 50% reduction shown in Figure 6 for
a fan-in and fan-out of 4.

ALU truth table ALU functions

x y a b c z z' s s' a b z s

0 0 0 0 0 0 1 0 1 0 0 x+y Carry
0 0 0 0 1 1 0 0 1 0 1 aORy 0
0 0 0 1 0 1 0 0 1 1 0 aXORy 0
0 0 0 1 1 0 1 1 0 1 1 aANDy 0
0 0 1 0 0 1 0 0 1
0 0 1 0 1 0 1 1 0 (b)
0 0 1 1 0 0 1 1 0 Decomposition of ALU0 0 1 1 1 1 0 1 0

0 1 0 0 0 0 1 0 1 z(x,y,a,b,c)=
0 1 0 0 1 0 1 0 1 (00(001))+
0 1 0 1 0 1 0 0 1 (01(000+010+011+100+101))+
0 1 0 1 1 1 0 0 1 (10(000+010+011+100+101))+
0 1 1 0 0 1 0 0 1 (11(001+010+011+110+111))
0 1 1 0 1 1 0 0 1 TT TTT
0 1 1 1 0 1 0 0 1 xy abc
0 1 1 1 1 1 0 0 1 z'(x,y,a,b,c)=
1 0 0 0 0 0 1 0 1 (00(000+010+011+100+101+110+111))+
1 0 0 0 1 0 1 0 1
1 0 0 1 0 1 0 0 1 (01(001+110+111))+
1 0 0 1 1 1 0 0 1 (10(001+110+111))+
1 0 1 0 0 1 0 0 1 (11 (000+100+101))
1 0 1 0 1 1 0 0 1 s(x,y,a.b,c)+
1 0 1 1 0 0 1 0 1 (00 b)+
1 0 1 1 1 0 1 0 1 (000)+
1 1 0 0 0 0 1 0 1 (01(001))+

1 1 0 0 1 0 1 0 1 (10(001))+
1 1 0 1 0 0 1 0 1 (11(000+001))
I 1 0 1 1 0 1 0 11 1 1 0 0 0 1 0 1 s'(x,y,a,b,c)=
1 1 1 0 1 0 1 0 1 (00(0(X)+(X)1+010+011 +100+101 +110+111))+
1 1 1 1 0 1 0 0 1 (01(000+010+011+100+101+110+111))+

1 1 1 1 1 1 0 0 1 (10(000+010+011+ 100+101 +110+ I11))+
(11 (010+011 + 100+101 + 110+111))

(a) (c)

Figure 7: Truth table descriptions (a) and (b) and functional decomposition (c) of an ALU.
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2.5. MSJ-Level Interconnection
We have had success in fully automating the layout of PLAs using strictly log2 N interconnects such
as the banyan, but we have not had a similar success in automatically interconnecting PLAs. Design
at this higher level is as important as PLA design. Even for an opto-electronic smart pixel approach,
in which the PLAs are implemented electronically, we still have to deal with interconnecting the
smart pixels optically, possibly again using perfect shuffles, banyans, or crossovers if regular
interconnects are used. We encountered this problem early on, because we found that automatic PLA
generation was effective for only a few input variables. For six or more variables, we needed to
develop a decomposition strategy in order to reduce the overall circuit size.

In Figures 7a and 7b, a truth table represents two functions z and s and their complements z' and s'
in terms of five variablesx, y, a, b, and c. We can use the PLA tool to generate a corresponding circuit,
which will be 64 logic gates wide and 12 levels deep, giving an area cost of 64 x 12 = 768. By

Factor out constants Assign function names to

innermost parenthesizations

z(x, y, a, b, c) = z(x, y, a, b, c) =
(00(001))+ (00 gO) +
((1 (000 + 010 +011 + 100 + 101))+ (01 gl) +
(1O (000+ 010 +011 + 100 + 101)) + (lOgl) +
(11 (001 +010+011 + 110+ 111)) (11 g2)

z'(x, y, a, b, c) = z'(x, y, a, b, c) =

(00 (000 + 010 + 011 + 100 + 101 + 110+ 111))+ (00 g3) +
(01 (001 + 110 + 111)) + (01 g4) +
(10 (001 + 110 + 111)) + (10g4) +
(11 (000+ 100+ 101)) (11 g5)

s(x, y, a, b, c) + s(x, y, a, b, c) +
(01(001)) + (01 gO) +
(10(001)) + (10 gO) +
(11 (000 + 001)) (11 g6)

s'(x, y, a, b, c) = s'(x, y, a, b, c) =
(00) + (00) +
(01(000+010+011 +100+101+110+111))+ (01g3)+
(10(000+010+011+100+101+110+111))+ (10g3)+
(11(010+011 + 100+101 + 110+111)) (11 g7)

(a) (b)

Figure 8: Factorization of constant terms (a) and assignment of labels to innermost parenthesization
groups (b).
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Assign function names to Create PLAs for innermost
next level of parenthesization parenthsization level

z(x, y, a, b, c) -
hO +
hl + aa'bb' cc' aa'bb' cc'
h2 + .IIIILI JIL IL.
h3

z'(x, y, a, b, 0 3-variable PLA 3-variable PLA

h4 + 16 wide x 8 deep= 16 wide x 8 deep=

h5 + 128 logic gates 128 logic gates

h6+ +T

s(x,y,a,b,c)+ gO gl g2 g3 g4  g5 g6 g7
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Figure 9: Assignment of labels for outermost level (a) and PLA organization (b).

decomposing the circuit into smaller PLAs, we can reduce the area cost to 512, although circuit depth
will increase to 16 as we will see.

The functions z, z', s, and s' are factored (decomposed) so that variables x, x', y, and y' appear at the
outer level, and variables a, a', b, b', c, and c' appear at the inner level as shown in Figure 7c. In Figure
8, constants (where a, b, c, and their complements have the same value for every combination) are
factored out as O's or 1 's, which reduces the sizes of the equations. The innermost parenthesized
groups are then assigned names. Note that there are 14 innermost parenthesized groups for a, b, c,
and their complements, but only eight labels (gO - g7) are needed to represent the 14 groups. This
is because some of the groups, such as gO = 001, are shared among more than one function.

Labels are assigned to the outermost parenthesized groups in Figure 9a, and the external view of the
PLAs that implement gO - g7 is shown in Figure 9b. In Figure 10, The PLA/MUX layout is shown
for the decomposed ALU (a MUX is a variation of a PLA). The outputs of the PLAs were sorted by
hand into the order shown in order to allow a simple interconnect (essentially the finest level of a
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Figure 10: Layout for decomposed ALU.

banyan) to interconnect the PLAs. We used a time constrained search technique to find the best
parenthesization, which we have found works well in practice.

We know from permutation theory that an arbitrary permutation of N items can be obtained in
3log2N - 1 levels of perfect shuffle interconnected bypass/exchange switches. The width of the
circuit shown in Figure 10 is 32 logic gates, which would require a multistage interconnection
network (MIN) of depth 31og 2(32) - 1 = 14 levels between the PLA and MUX stages, rather than the
single stage that we achieved here. An advantage of the 14 level approach is that there exist good
algorithms for configuring the networks. One level of interconnection is good, but 14 levels of
interconnection is much too deep to be practical. We can reduce the depth by constraining PLA
outputs to equally spaced positions (every fourth gate, for example) which has the effect of reducing
N in proportion to the spacing. Although this helps, it does not help enough. A conventional
electronics approach would require only a single level of interconnection, and in fact, we did manage
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Figure 11: A single perfect shuffle stage connects full adder elements of an eight-bit ripple-carry
adder.

a single level between the PLA and MUX components in Figure 10, but it required the help of
designer.

Although we need 3log2N - 1 levels of shuffle/exchange stages to achieve an arbitrary permutation
of N items, we are not trying to achieve every permutation: we just need one permutation that works.
As a general approach to the problem, we looked at ways to interconnect PLAs using one or two levels
of a perfect shuffle interconnect, with the added flexibility of choosing a tiling as to where the PLAs
fall.

In Figure 11, a mapping is shown of an eight-bit ripple-carry adder onto a single perfect shuffle stage,
using one-bit full adder (FA) PLAs. The abstract layout as a digital electronic designer might
represent it is shown at the top of the diagram. The problem is to map the connections between FAs
into a single perfect shuffle. The perfect shuffle layout at the bottom of the diagram was obtained by
feeding the connectivity pattern of the abstract layout into a program we developed at Rutgers. This
example is significant because it shows that the MSI interconnects for at least one circuit can be
forced into a perfect shuffle structure without adding depth to the circuit. An implementation using
a completely unconstrained interconnection topology would be just as deep, so we have incurred no
depth penalty here. We continued our investigation and found that many types of regular structures
map easily onto a single stage of the perfect shuffle whereas irregular structures do not. As it turns
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Figure 12: A 12-bit SCLA.

out, for the case of the ripple-carry adder, the ripple connections for an arbitrarily large adder can be
trivially mapped onto a perfect shuffle by taking a "walk" through the perfect shuffle such that every
link is traversed exactly once.

Irregular structures are not impossible to map onto a single perfect shuffle stage, but they do require
more work. We investigated another case, which involves interconnecting PLAs for a 12-biL section
carry lookahead (SCLA) adder. The schematic for this circuit is shown in Figure 12, which shows
the layout as a digital electronic designer might draw it. Notice that the interconnects appear to be
irregular, that the PLAs have different sizes as indicated by the varying numbers of inputs and

bis, lbzosiob aa bag asb 7 a7 b6 a6 b5as N a4  b3 83 b2 a2 b, a, boa co
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iGOVP S3 S2 - i SO
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Figure 13: Th eA pe 12-bit SCLA.
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Figure 14: A successful PLA tiling of the 12-bit SCLA shown in Figure 13, using a single perfect
shuffle stage.

outputs, and that there is fan-out within the interconnect itself. That is, a connection may be tapped
in more than place. Since our point-to-point perfect shuffle does not support fan-out, our first step
is to push the fan-out back to the origingtfog PLAs. Figure 13 shows the remapped circuit. If an
origwninathng PLA is already at thFigur 1. e ne step i p thechnology, then we must add a fan-
out PLA. For this case, there is no need to add a fan -o ut PLA.

Again, we attempt to map all of the connections shown in this diagram in gle stage of a perfect
shuffle. The problem is small enough to attempt an exhaustive search, which we did, and failed. There
is no possible repositioning of PLAs with a 64-wide perfect shuffle that will work. We then tried a
second approach, which involves repositioning the boxes (PLAs), and growing the smaller boxes up
to the sizes of the larger boxes in order to absorb more input and output ports. This approach
succeeded for the 12-bit SCLA as shown in Figure 14. Exhaustive search is no longer practical
because the sizes of the PLAs vary, and so we took the best of the failed solutions for the original
PLAs, after remapping to remove fan-out, and then used manual trial-and-error to obtain the solution.

We then attempted a similar mapping for a 16-bit SCLA. The original schematic for the circuit is
shown in the upper diagram of Figure 15. The next step is to push the fan-out from the interconnect
to the PLAs. We encounter a problem, because the Go and P0 outputs from SCLA0 are fanned out
to four other PLAs, and there are not enough unused output ports in SCLA0 to produce four copies
of Go and P0. We can extend the width of SCLA0 to create four more output ports, or we can add a
PLA that fans out Go and P0, and thereby avoid increasing the size of the largest PLA. We tried the
latter approach first. A fan-out PLA is added to the circuit, as shown in the lower diagram of Figure
15. The fan-out PLA produces two of the four needed copies of Go and P0. The third copy goes to
the Carry Logic0 PLA, which produces the fourth copy of Go and P0 at two of its unused output ports.

As before, we took the best of the failed solutions for a 64-wide perfect shuffle and then attempted
to manually grow the smaller PLAs up to the sizes of the larger PLAs. We could find no solution using
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Figure 15: Original 16-bit SCLA (upper diagram), and remapped circuit (lower diagram) in which
all connections are point-to-point (no fan-ins or fan-outs).

this approach, although a solution may exist. We did obtain a solution for the full 16-bit SCLA by
extending the width of the SCLA0 PLA, which allowed the fan-out PLA that was introduced in Figure
15 to be eliminated, and by extending the widths of some of the remaining PLAs. The width of the
perfect shuffle was also doubled from 64 to 128. The solution is shown in Figure 16. We could not
find a solution for the 16-bit SCLA using a single perfect shuffle stage that did not also increase the
width of the widest PLA.

To summarize: a single point-to-point perfect shuffle interconnect without fan-out can implement
all of the MSI-level interconnects. Although this is a significant accomplishment to achieve by hand,
we have found no suitable method of fully automating the approach. At the moment, automatic MSI-
level interconnection using regular interconnects for irregularly structured circuits is an open
problem.
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Figure 16: A successful PLA tiling of the 16-bit SCLA shown in Figure 15, using a single perfect
shuffle stage.

2.6. Permuting Inputs, Outputs, and Minterms
In order to simplify the mapping of MSI components to a single stage of a perfect shuffle in the
previous section, we assumed that we could simply have a signal enter somewhere at the top of a PLA,
without regard to the actual position where it enters. For an electronic approach this might be
allowable, but it might also not be allowable because VLSI design is typically done with "standard
cell" libraries in which the inputs and outputs are constrained to certain positions. For our regular
interconnect approach, the PLA tool chooses the positions of the inputs, and allows some flexibility
in the positions of the outputs, but even with this flexibility, the outputs of one PLA rarely line up
with the inputs of another. For this reason, we developed a permutation tool, which allows input

x' x yy" x x' yy'

~1 2.34 51236 ~7 =AND g~ate

(a) (b)

xy x'y xy' xY xy xy' x'y x'y'
Figure 17: Two functionally equivalent designs for a 2to-4 decoder.
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positions and minterm positions (the middle stage of a PLA) to be arbitrarily specified by the
designer. If a solution is not possible, the program responds quickly and the designer can try an
alternate configuration, otherwise a solution is produced in reasonable time (no more than a few
minutes).

As an illustration, Figure 17a shows a 2-to-4 decoder with the inputs x, x', y, and y' in positions that
are permuted with respect to the 2-to-4 decoder shown in Figure 2, and the outputs at the bottom
appear in the same positions as in Figure 2. Figure 17b shows a functionally equivalent circuit, in
which the inputs are in the same positions as in Figure 2, while the minterms xy' and x'y' have been
interchanged.

3. FAULT AVOIDANCE

A potential problem with relying on novel GaAs based optical logic devices such as SEEDs or
VCSELs is that defect densities are greater than for conventional Si electronics. Feature sizes tend
to be large for photonic components when compared with conventional electronic components, and
the pitches (center-to-center spacings) among elements are large due to cooling and diffraction
limitations. In order to achieve comparable computation complexity to a digital electronics
technology, either large perfect device arrays will have to be fabricated, or fabrication and processing
defects will have to be dealt with some other way, such as at the architectural level.

We investigated two approaches of dealing with defects at the architectural level. One approach
reorients and translates arrays so that defects colocate with unused positions in the arrays. We
describe a bipartite matching algorithm in Ref. [7] for deciding how to orient the arrays so that the
best match is made between the available arrays and the system being constructed. Consider an
optical processor that makes use of 10 device planes with 32 x 32 optical devices in each plane, with
an average of approximately one device fault per array. The design density is a measure of how many
of the available logic elements are actually used, since some percentage is wasted due to redundancy
that is necessary for avoiding faults. Here, 80% design density is used, which is typical for circuits
designed with the PLA tool, since approximately 20% of the optical devices are unused as a result
of the regular interconnection pattern, which leaves them in "landlocked" (inaccessible) positions.
For this approach, we assume that a system design cannot be changed in order to deal with faults, and
so we are faced with the problem of selecting device arrays so that faults colocate with unused
devices. A greedy approach, which we consider for the purpose of comparison, tries to match an
array with a given slot in the system by taking an array from a bin and trying it at one location, and
if the match fails, then the array is discarded and another is tried. The graph in Figure 18 shows that
this approach allows 53% of the arrays to be used. If rotation of an array by 1800 is allowed, as well
as translation by one position vertically and horizontally, and if the best fit is found between an array
and the empty slots in the processor, then 91% of the arrays are utilized as illustrated in Figure 19.

A second approach redesigns circuits to route around faults. With this approach, greater flexibility
is allowed by redesigning the circuits. The interconnects are changed after the initial design is created
and after the locations of the faults are known, which is a simpler task than generating fault-free
device arrays. An enumeration study shows that arrays can be used with an average fault ratio of 10%
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Figure 18: Contour plot showing utilization of device arrays as afunction of design density andfault
density for greedy match.

for small circuits. Figure 20 shows a sample of data taken from the study which shows different
designs for a 2-to-4 decoder. Inputs at the top and minterms at the bottom of each circuit are permuted
in order to bypass faults. Two simultaneous faults are considered for the upper 24 logic gates of each
circuit in this sample. 87% of the faults are correctable for this situation, and when there are three
randomly placed faults, over half of all fault combinations are correctable.

The reorientation / translation approach works best when defect densities are low, on the order ofjust
a few faults per 1000 devices. The redesign approach is more appropriate when defect densities are
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Figure 19: Contour plot showing utilization of device arrays as afunction of design density andfault
density for translation and 180 * rotation match.



23

xx yy x x y y x x y y

I- • I I i L I I II I I_ I i I I J LiL

""y xy xy x xy xy xy x xy xy xy x
y y y

xy xy xy x y xy xy x xy xy xy x

Figure 20: Portion of exhaustive fault analysis for all two-fault combinations in a two-variable
banyan connected PLA.

high, on the order of 100 faults per 1000 devices. The redesign approach does not produce a
completely new design for each circuit: the basic structure of the original design is maintained, and
only the inputs and outputs are permuted for the individual PLAs. We feel that this constraint will
simplify the development of a tractable redesign algorithm, which is an unexplored area.
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4. INVESTIGATION INTO RECONFIGURABLE INTERCONNECTS

The notion of functional locality was introduced by Murdocca in the final report of an SDIO
sponsored Phase I SBIR project that was administrated by AFOSR (contact is Dr. Alan Craig). The
report suggests that an ordinary computer program displays locality in terms of the kinds of
instructions it executes, that is, a program is likely to execute an instruction from the small set of
instructions that are most recently executed. We investigated that notion by performing experiments,
and found that functional locality exists in ordinary computer programs. This is a significant
observation, because it may allow us to develop architectures that reconfigure themselves to match
the natural form of the computation being performed, potentially leading to high performance
architectures.

Just as spatial and temporal locality exhibited by a program are utilized to speed up memory delays
by using cache memories, we believe that functional locality makes a strong case for the introduction
of function caches, in which the interconnection patterns for just a few operations are maintained
in the processor at any time. Reconfigurable processors that implement only a small set of machine
instructions at any time but at rates faster than non-reconfigurable processors can exploit functional
locality to achieve higher performance. Our belief that such a reconfigurable processor will execute
its instructions faster than a comparable non-reconfigurable processor is based on the design
guideline that smaller hardware is faster [8].

4.1. Measurements of Instruction Set Usage
Hennessy and Patterson [8] report on the instruction set usage for a number of application programs
running on different architectures, and conclude that ordinary programs use only a small part of the
total instruction set provided by the architecture, and that an even smaller set of instructions (about
twelve or so) account for as much as 80% of the total number of instructions executed. This
observation motivated us to look for functional locality in programs. Our study [91 is carried out in
two parts. We look first at the extent of functional locality that arises solely from the fact that some
instructions are executed more often than others. In this part of the study, using the run-time
frequency count information collected in the instruction usage study reported in Ref. [8], we
synthesized random runs with uniform frequency distributions of machine instructions matching
those reported, and studied the hit-ratio that a reconfigurable processor would achieve for different
sizes of the function cache using a first-in/first-out (FIFO) instruction replacement strategy. The idea
is that it is the actual hardware that is being replaced, and not simply the codewords that represent
instructions, which would be the case for a conventional electronic processor. This part of the study
uses two architectures - the DEC VAX, and the DLX, which is a generic Load/Store architecture
described in Ref. [8]. Three different programs are used on each machine: gcc (a C compiler), spice
(a circuit simulator), and tex (a text formatter).

Figure 21 shows a plot of hit-ratio against code size for the DLX running gcc for different function
cache sizes. Plots for spice and tex for the DLX, and also for these three programs on the VAX are
nearly identical in form to Figure 21. For our purposes, the hit-ratio is the percentage of the total
instructions executed for which reconfiguration is required assuming that at any given time, the
processor implements only as many instructions as the size of the function cache allows and
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Figure 21: Hit ratio versus code size for different sizes, c of the function cache for synthesized runs
of gcc on the DLX.

reconfigures itself to implement an instruction that is not in the function cache. In each case the hit-
ratio increases as the function cache size increases but is almost completely insensitive to code size.
For this reason, we use a code size of no more than 1,000,000 machine instructions for the
measurements that follow.

Figures 22 and 23 show plots of hit ratios as functions of cache sizes for the DLX and VAX, for
synthesized runs based on the instruction mixes found in gcc, spice, and tex. As shown in the plots,
high hit ratios are obtained for small cache sizes. Motivated by these results, we developed software
tools for the second part of the study, which allowed us to gather statistics on entire runs of sample
programs. The architecture used for this part of the study is the SPARC based Sun-4 and the programs
studied are latex and the gcc components: gcc-cpp, gcc-ccl, as, and Id. Collecting a program trace
in this fashion slows down the program being traced by a large factor. For example, one trace of seven
million instructions required nine hours of actual time. For this reason, the programs were executed
using small sample files. Figure 24a shows the effect of changing the size of the function cache on
the hit-ratio for different programs. For the programs shown in Figure 24a, we also gathered data on
the run-time frequency distribution, generated runs with matching frequency distributions, and
studied the effect of function cache size on hit-ratio. Our observations are shown in Figure 24b. Note
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that the hit-ratio values we see in Figure 24a re higher than corresponding values seen in Figure 21
for the same function cache size. This indicates that the programs in our study exhibit functional
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locality to a higher degree than would be exhibited simply because some instructions are executed
more frequently than others.

4.2. Discussion
The data we have collected provides evidence for the existence of functional locality in ordinary
programs. Based on tie evidence, we hypothesize that a reconfigurable processor that modifies its
hardware to execute a slowly changing set of machine instructions can exploit functional locality to
achieve higher performance than a non-reconfigurable processor. In order to quantify the perfor-
mance gain, we define 0 (> 1) as the ratio by which the execution of an instruction which is not in
the function cache is slowed down compared to the execution of an instruction in the cache. The factor
by which a reconfiguring processor is slowed down because of misses is then given by slowdown =
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Figure 24: Hit ratio as afunction of the size of the function cache for synthesized runs on the SPARC
for (a) actual runs, and (b) synthesized runs with the same distribution of instructions as the actual
runs.
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h + 0 x (1 - h) where h is the hit-ratio. If a (< 1) is the ratio of the speed with which the reconfigurable
processor executes an instruction that it finds in its cache to the speed at which a non-reconfigurable
processor executes an instruction, then in order for the reconfigurable processor to be faster than the
non-reconfigurable processor, a should be less than 1/slowdown.

From Figure 25, it is clear that the higher the hit-ratio, the lesser the sensitivity of the slowdown factor
to the cost of reconfiguration. We choose a sample point 1 = 5, based on the expected reconfiguration
time as compared to the bit rate of matrix addressable devices that are being developed at Photonics
Research Incorporated (PRI) under NASA support, and which have also been developed at AT&T
in Breinigsville, PA. We choose h near 0.8, which is typical for execution runs we have observed.
This sample point gives us a slowdown of 2, which means that the processor runs twice as slow as
a result of misses than it would run if there are no misses at all. A reconfigurable processor is assumed
to be faster than a non-reconfigurable processor as a result of its reduced size, however, and so the
speedup must compensate for the slowdown. In order for the reconfigurable processor to break even,
it must execute instructions at twice the rate of a non-reconfigurable processor. Based on our
knowledge of conventional computer architecture, however, we do not believe that reducing the
instruction set by as much as 90% will produce a speedup of much over 2, and so we chose not to
pursue this style of reconfiguration. Instead of trying to speed up a conventional serial processor
through reconfiguration, we feel that we can use the same principle of functional locality to speed
up a parallel processor. We describe an approach we are pursuing that is based on dataflow computing
in Section 10.

Although we do not feel there will be a significant payoff in using the function cache concept in a
conventional processor, a potential application of these results is for the DOC II optical processor
[10] under development at OptiComp Corporation. The DOC II processor is being developed for a
SPARC-like instruction set, but only a subset of the instruction set can be implemented at any one
timef. Our investigation here can be used both to determine how to organize the cache (which is
implemented by the DOC II instruction mask) and to characterize the effectiveness of the strategy.
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4.3. Gate-Level Reconfiguration
In a few of the optical processors developed at AT&T Bell Labs, SEED based architectures are
customized by placing fixed masks in the image planes of the interconnects. There is no need for the
customizing masks to remain fixed, and in fact, they may be implemented in any of a number of ways
that support runtime reconfiguration, such as with ferroelectric liquid crystals, matrix addressable
logic arrays, or through beam steering elements. Although reconfiguration times may be longer than
the bit rates with these approaches, the existence of functional locality helps to offset the mismatch
in speeds. We have developed the notion of a reconfigurable logic/interconnection component
(RELIC) which makes use of reconfigurable optical interconnects at the gate level. In a very simple
form, a RELIC consists of independently addressable optical logic gates and static optical intercon-
nects. Reconfiguration at the gate-level is obtained by selectively enabling or disabling logic gates.

A RELIC may compete with existing electronic field programmable gate arrays (FPGAs) such as the
Xilinx line of reconfigurable components. The internal configuration of a Xilinx chip is shown in the
left side of Figure 26. A number of PLAs, shown as rectangles, are interconnected through an
embedded arrangement of crossbar switches. The PLAs contain lookup tables (LUTs) for two seven-
variable Boolean functions, and provide two bits of internal feedback to the LUTs. Each PLA
generates two one-bit outputs. A sanall number of channels (five shown in the figure) pass through
each crossbar in horizontal and vertical directions. The LUTs and crosspoints of the crossbars or,
configured by loading static flip/flops, one per decision element (or crosspoint). The Xilinx chips are
popular in the area of rapid prototyping, in which a hardware implementation of a target processor
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crossbar she interconnctss
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Figure 26: Xilinx (left) and RELIC (right) models.
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is realized with reconfigurable components, but at a greater cost and with reduced performance than
with a custom hardware design. Commonly, Xilinx chips are used in end-products as well as in
transition hardware, particularly when production quantities are small (less than 1000 units).

With regard to reprogrammability, the Xilinx line is very flexible, but the user is forced to decompose
large circuits into a number of interconnected one-bit circuits. This often unnatural decomposition
sacrifices performance. For example, a ripple-carry adder maps well tc the Xilinx approach because
of its regular form (see Figure 11), but a fast parallel adder that has an irregular form (see Figure 12)
does not. As an illustration of why this is the case, consider the general layout of the Xilinx chip,
which is clustered into one-bit logic units and narrow communication channels. Although it is
possible to create a gate-level switching matrix that allows a user to modify interconnects at the gate
or component level, it would be nearly impossible to maintain a clock speed of 50 MHz (a typical
Xilinx internal clock speed) due to the enormous wiring complexity of such a chip.

The RELIC approach allows gate-level and component-level interconnects to be allocated as needed,
without suffering a large increase in wiring complexity. This is accomplished through a regular gate-
level interconnection pattern such as a perfect shuffle, in which either the logic gates or the
connections are reconfigured during operation. The gate-level layout of a RELIC is illustrated in the
right side of Figure 26. A few logic gates are devoted to inputs and outputs, and the remaining logic
gates are interconnected in a regularly structured "sea-of-gates" with no pre-allocation of local or
global interconnects. We have found that gate counts using this method are higher than for a fixed
arbitrary interconnect, as noted in Section 2, but that the flexibility of modifying the gate-level
interconnects may override the cost in gate count. In comparison, less than 10% of the available logic
is used for any particular application with a Xilinx approach, and our optical approach is not far from
the electronic approach in terms of gate count.

5. OPTICAL INTERCONNECTS

We carried out an investigation into novel interconnection technology, in order to understand trade-
offs between the complexity of the optics and the complexity of the architecture. As an example of
an issue in the trade-off investigation, consider that irregular interconnects can be achieved with
diffractive optical elements. Our studies show that there is a trade-off between lens size and
propagation distance (see Section 5.3). A completely irregular interconnect will effectively require
a separate imaging system for each optical signal, and the resulting propagation distance of a few
millimeters may not allow for steep angles of incidence, thus complicating the implementation of a
completely irregular interconnect. A mix of regular and irregular interconnects appears to be a
reasonable compromise when the trade-offs among the optics and architecture are considered
together. One rule of thumb that we have used is to maintain regular interconnects for clusters of
signals, 4x4 for example, and then use irregular interconnects between clusters. In this way,
propagation distance can be increased while simultaneously reducing the circuit depth that is
attributed to the regularity.

We have also studied the AT&T S-SEED based optical processor in detail, and we achieved a
familiarity with S-SEED switching devices by working for several weeks with Dr. Robert Morgan
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in the AT&T Solid State Technology Center in Breinigsville, Pennsylvania. An outcome of the
AT&T visits is the understanding that optical logic gate imaging with single large lenses is difficult
to extend beyond modest array sizes. A visit to Scott Hinton's group at AT&T Bell Labs in
Naperville, Illinois confirmed this finding. The problem is due to the incompatibility of large field
sizes and small diffraction limited spot formation. A micro-optics approach is an important
alternative, and we studied various aspects of this approach. A detailed analysis has been made of
the trade-offs between micro-element size and crosstalk-free propagation distance imposed by
diffraction. Contours of this trade-off have been plotted and serve to guide in the formulation of
micro-optic interconnection architectures.

In a separate but related Rome Laboratory sponsored effort, we are collaborating with the Photonics
Center at Griffiss AFB in the design and construction of an all-optical digital processor based on S-
SEED devices. A significant problem for the RL project is in how to implement the interconnects.
The calcite approach described below is one method we have developed that has been transitioned
to the Photonics Center. The method has influenced the types of interconnects that we support in the
tools. For example, the calcite approach is ideal for a split-and-shift topology that might be studied
in XOPID.

5.J. Birefringent Array Generation and Interconnection
A hardware solution to two related problems has been demonstrated: (1) the generation of arrays of
spots from a single source or from multiple sources, and (2) the interconnection of optical logic gates.
Spot-array generation is a significant problem in providing power beams to modulator devices like
the S-SEEDs, which are used in optical processors under development at AT&T, Boeing Aerospace,
Optivision, and the Photonics Center.

Cascaded slabs of birefringent materials can be used for efficient spot-array generation and for
providing fan-out in optical interconnection. This was first shown, for the case of cascaded Wollaston
Prisms, by Jewell et al. [ 11 ]. In the approach investigated here, collimated or converging beams are
repeatedly split by propagation through simple slabs of birefringent media. These media can include,
for example, calcite, rutile, quartz, or form-birefringent materials [12]. In the first stage shown in
Figure 27, a spot of light polarized at 45" to the axes is imaged through a uniaxial crystal slab which
is oriented with its reference plane (a plane containing both the ordinary and extra-ordinary rays)
parallel to an axis. The output image of the single input spot is now resolved into two spots which
are orthogonally polarized. The ordinary spot is not displaced and is polarized perpendicularly to the
reference plane. The extra-ordinary spot is polarized parallel to the reference plane and is displaced
by a distance proportional to the thickness of the crystal slab. In the second stage the process is
repeated. Since the input spots are now polarized along the axes, the crystal slab is rotated by 45* so
that each input spot retains equal components of ordinary and extra-ordinary light. The output image
now consists of four spots, with orthogonal polarizations as shown. With each subsequent stage, the
crystal is rotated by 45" and the number of spots are doubled. In practice, all the crystals may be
optically contacted or cemented to reduce surface reflections and scatter, and a single imaging stage
can be used for the entire cascade. For the case of calcite, ordinary and extraordinary rays are
internally separated by an angle of 6.2%, and the crystal slabs are thus about 10 times thicker than the
spot separation desired for each stage.
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Figure 27: Birefringent array generation.

Thin birefringent slabs with large lateral dimensions may be readily cleaved from inexpensive
crystals such as calcite. The lateral extents of such slabs are not limited as with crystal prism
approaches using Rochon, Wollaston, or related prisms. Other practical advantages of the cascaded
slab approach include compactness, ease of manufacture, and integrability. The method has been
demonstrated, and has been transitioned to the Photonics Center at Rome Laboratory, where it is
being considered for interconnection and for spot-array generation for their S-SEED based proces-
sor.

5.2. Sub-Array Generation, Interconnection, and Redundancy
The birefringent slab technique may be particularly useful for sub-array generation in which a sparse
regular array of beams is transformed into a much denser spot array with approximately the same
lateral extent. For example, an array of surface emitting microlasers may be fabricated with relatively
wide element spacings to facilitate cooling. Such a coarse array can produce a dense array of spots
by imaging the array through a few cascaded birefringent slabs. This is shown in Figure 28 which
is a digitized photograph of an output array consisting of 48 spots. In this experiment, 12 input beams
at a wavelength of 0.85 pm are derived from three diode lasers and beamsplitters. These 12 beams
are aligned into a regular array (simulating the output of an array of microlasers) and are focused to
form spots through two cascaded calcite slabs. The two calcite slabs quadruple the density of the
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Figure 28: Sub-array generation.

resulting spot array, causing each input beam to produce a local cluster of four spots. The 12 input
beams and local spot clusters are shown in the diagram. The filled circles that overlay 12 of the 48
spots indicate positions in the source array. The vertices of each overlaid parallelogram indicate
positions of spots that are generated from the corresponding source. This experiment also demon-
strates the application of birefringent slabs to provide fan-out for optical interconnections. The light
from each input beam in this example is now equally divided among four locations. Similarly, the
opposite case of fan-in can be accomplished in which crystals are used to overlay light from
neighboring spots. In addition to being highly efficient, birefringent array generation and intercon-
nection are much less dispersive than diffractive techniques (like Dammann gratings, which are used
at AT&T in their S-SEED processors) and are therefore useful with multiple wavelengths, broadband
light, or in situations where wavelengths may drift.

An important use of cascaded birefringent slabs is as an efficient method to establish redundancy in
spot arrays. It was shown by Lohmann [ 131 that spot homogeneity and system reliability can be
greatly enhanced by using spot arrays in which the spots are formed by superposing the outputs of
a multiplicity of sources, rather than the usual case in which a single source supplies one or more spots
exclusively. The reduced coherence resulting from uncorrelated source superposition greatly
enhances the homogeneity of the spots by averaging out coherence related structure. Further, a large
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degree of source fault tolerance is achieved with this redundancy. For example, if each spot contains
equal input from 32 sources, a failure of one of the input sources will only reduce the overall array
uniformity by 3%.

5.3. Micro vs. Macro-optics
We have made an investigation into trade-offs between approaches using micro-optics and macro-
optics for interconnecting arrays of optical logic devices. This is an important contribution to the
overall effort since it forms a basis for developing the design tools so that they satisfy both
fundamental and practical constraints to interconnection. Results of these analyses are reported in
a book chapter that we prepared for Optical Computing Hardware, edited by Sing Lee and Jdrgen
Jahns [3]. An excerpt from this study is given below:

Critical Distance for Collimated Array
An example of the diffraction-based trade-offs in device spacing and propagation distance
is given for the case involving a collimated array of beams. The critical distance is a function
of the microlens diameter. For example, consider an array with a device spacing A = 200 pm
and light of wavelength 0.85 pm. If the lens is only 10 pm in diameter (D/ A = 0.05), there will
be a buffer zone of width B = 95 pm on each side of the microlens over which the light may
spread before crossing into the neighboring channel. The diffraction spread angle of the beam
from such a small lens, however, is large (4.9°), and after only L, = 1.1 mm the beam begins
to spread beyond the 95 pm buffer and mix with the neighboring signal. Similarly, as the
microlens diameter approaches the gate spacing, the critical distance L, is also very small.
Near this other extreme, if D/A = 0.95 (D = 190 pm) the diffraction angle is a much smaller
.26, but the buffer zone width is now reduced to B = 5 pm, and L, is again only 1.1 mm.
However, for less extreme values of D/A (e.g., near 0.5), L. is much larger (nearly 6 mm).
Figure 29 shows a plot of L, (given in millimeters) as a function of varied fill factor D/A and
gate spacing A. Since the diffraction angle decreases with increasing lens diameter, one might
suspect that low crosstalk could be maintained over longer distances if the full width A could
be utilized for the microlens apertures. Effective use of these larger apertures can be
accomplished by slightly focusing the beam emerging from the microlens, thus avoiding the
condition in which any spreading of the collimated beam from a lens with D = A results in
crosstalk.

This focused array configuration is discussed in the book chapter, as well as several other results of
the investigation.

The micro/macro-optics study has been useful in identifying applications that are best served with
conventional optics, and those where diffractive optics are more reasonable to apply. This aspect of
the work influences the design of digital circuits, and we have used the XOPID tool to investigate
the architectural implications of using various combinations of micro and macro-optics.
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Figure 29: Plot showing critical distance as afunction of gate spacing and fill factor.

5.4. Achromatic Optical Interconnects.
A lesson learned from the studies carried out in this project is the highly constrained nature of the
plane-to-plane optical interconnect problem. The trade-offs between gate or device spacing, spot
size, number of devices, plane separation, imaging system complexity, etc. are strongly related to
each other, and reasonable compromises immediately push optical system complexity near practical
limitations. It has become increasingly apparent that using wavelength as a new dimension in order
to extend the interconnect system performance without a corresponding increase in complexity is a
promising direction. Further, it has been demonstrated by others that the dispersion of "single
wavelength" interconnect systems can be a problem (particularly with systems utilizing diffractive
elements) with the typical wavelength drift or mode hopping in sources. In response to these
considerations, the topic of achromatic optical interconnection systems has been investigated.

In this area, several methods for achromatizing finite and infinite conjugate interconnects have been
studied. The dispersion resulting from using simple refractive and diffractive single element lenses
was characterized and compared with systems using refractive and hybrid refractive-diffractive
achromats. Further, new combinations of simple dispersive elements comprising an overall achro-
matic interconnect system were developed. The advantage of the latter approach is that the
complexity of the elements in the system is greatly reduced over the all-achromat approaches.
Typically some chromatic difference of magnification is left as a residual, but this is not a problem
in most cases and can be eliminated if required. These results are being prepared for publication.
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8. PATENT DISCLOSURES

The following patent disclosures were made during the course of the effort:

T. Stone, "Birefringent Array Generator and Birefringent Optical Interconnector."

T. Stone, "Achromatic and Dispersive Retarders and Compensators."

The Rutgers Office of Corporate Liaison and Technology Transfer did not carry either disclosure
through to a patent.

9. TECHNOLOGY TRANSFER, AND COORDINATION WITH OTHER INSTITUTIONS

9.1. AT&T Bell Labs
At the beginning of the effort, Stone worked for several weeks at AT&T Bell Labs in the Solid-State
Technology Center (STC) facility in Breinigsville, Pennsylvania. This interaction provided us with
expertise in S-SEED devices, which influenced our work on diffractive optical interconnects. After
visiting Scott Hinton's Photonic Switching group at Bell Labs in Naperville, Illinois, in a coordinated
effort with members of the Photonics Center, Hinton's group made their binary phase grating spot
array generation technology available to us. We may use the binary phase gratings in conjunction
with Stone's birefringent interconnection methods in the Photonics Center processor.
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9.2. Rome Laboratory
The design tool development has moved into a transition phase in which practical circuits are being
designed. In a separate effort, we are using the tools to design and simulate a small decoder circuit
for an S-SEED testbed processor that is under development in the Photonics Center at Rome
Laboratory. Our work on birefringent array generation has also been transitioned to the Photonics
Center, where RL personnel have participated in demonstrating the technique.

9.3. OptiComp Corp.
Murdocca and Gupta visited Peter Guilfoyle's group at OptiComp in October 1990. A collaboration
was initiated, and as a result, Murdocca created an architecture and a pipeline scheduling for a
modified DOC H processor that inverts a system of linear equations in 10 unknowns (see [Murdocca
and Levy, 19911 in Section 7.1). The intended application is null steering for phased array radar.

We believe an opportunity for technology transfer exists for our work on functional locality. The
OptiComp DOC II project makes use of a spatial light modulator (SLM) that implements only a
subset of a RISC instruction set. Our analyses demonstrate that this approach is not only feasible, but
that an architectural gain can be realized if only 10% of the instruction set is implemented at a time.
Further, our analyses are based on a first-in/first-out (FIFO) strategy for instruction replacement,
which corresponds to the FIFO strategy used in the DOC II project. We described early results to P.
Guilfoyle of OptiComp in the Spring of 1992.

9.4. NEC Research Institute
During the last year of the effort, we created a formal collaboration with Dr. Eugen Schenfeld of NEC
Research Institute in Princeton. The collaboration has been underway since July 1992, primarily
between Gupta and Schenfeld, in the area of reconfigurable optical interconnects. Since the
collaboration began, Gupta has focused on a model of reconfiguration that makes use of a large but
slowly changing reconfigurable optical interconnect that connects a number of small but fast
electronic reconfigurable interconnects. Many parallel applications exhibit switching locality in
which each process tends to communicate directly with only a small set of other processes for a given
interval of time. An Interconnection Cached Network exploits switching locality to gain high
performance. In such a network the set of communicating processes is partitioned into small clusters.
Processes in the same cluster communicate over small, fast electronic switching networks. A slowly
reconfiguring high-bandwidth optical network interconnects processes in different clusters. Effi-
cient embeddings of communication structures can be obtained for such a network to ensure that the
large, slowly reconfiguring network need not switch very often, which is the area of work where
Gupta is concentrating his efforts.

9.5. Siemens Corporate Research
During the last year of the effort, we created a formal collaboration with Siemens Corporate Research
in Princeton. The Optical Computing Research group at Siemens is supporting a Ph.D. student, who
is following up on the reconfigurable architecture work described in Section 4. The Siemens group
intends to construct a prototype optoelectronic processor and is using our reconfiguration model as
the basis for their demonstration.
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10. PLANS FOR FUTURE WORK

Although we intend to continue all of the work that we have reported here, we have made plans to
pursue two specific directions, which are described below.

10.1. Design Tools
An extensive software task lies ahead in making the design tools more user friendly, and in refining
the tools to conform to practical considerations that arise in laboratory experiments. Some of the
practical problems that have been discovered that the tools do not address are:

(1) The need for a simulator that supports functional modeling and debugging of logic circuits.

(2) The need to XY-fold rectangular circuit designs (this is the shape that the CAD tools produce)
onto square logic arrays.

(3) The need to Z-fold circuit designs into the linear order supported by arrays (e.g. OR-OR-NOR-
repeat may be all that is supported when OR-NOR-OR-NOR is needed). A related issue is the need
to automate the mapping of associative logic (such as AND and OR) onto non-associative logic
arrays (such as NOR).

Although we would like to address these practical considerations at Rutgers, it poses a considerable
time investment. Instead, the tools are being upgraded through the help of two programmers who are
being supported through a Phase II SBIR effort at Rome Laboratory (Project Engineer is Robe, rt
Kaminski, 315-330-4092).

10.2. Reconfigurable Optical Interconnects
Our discovery of functional locality in ordinary programs motivated us to organize an effort that
exploits this property. As a result, we were recently awarded a three-year NSF grant to investigate
an architecture for a digital optical processor that reconfigures itself to match the natural form of the
computation. Our approach is to write programs in a high-level dataflow language such as ID, and
then automatically extract a dataflow graph from the program. The dataflow graph, which exposes
parallelism in the program, then serves as a template for automatically configuring a parallel
processor. The idea is to reconfigure the interconnects among the processing elements (PEs) to
implement the dataflow graph directly, as if a custom piece of hardware is being created to implement
the high-level program. This approach is novel, because conventional electronic architectures are
forced into mapping dataflow graphs onto physical architectures that are not well-suited for the
computation at hand. We plan on using interconnects such as the perfect shuffle, banyan, and
crossover among PEs, and so our work on decomposition and MSI interconnection will be used here.

A second NSF sponsored effort has recently started, in which we are exploring a memory with an
optically reconfigurable decoder tree, and so the decoder tool will be used here. The memory concept
allows arbitrarily shaped data objects to be manipulated in constant time. The idea is to first
reconfigure the decoder tree so that the irregular object looks regular (fills a sub-branch of the
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decoding tree), followed by a parallel read or write to the sub-branch, followed by a final step that
restores the object to its irregular form. This is extremely difficult to achieve with a conventional
electronic approach due to the need for parallel access to the decoder tree. A free-space optical
approach, however, may support the needed parallel access. We have coupled this idea to
Optoelectronic Data Systems (ODS) of Boulder, Colorado, which has submitted an SBIR proposal
to ARPA to pursue an acousto-optic implementation of the reconfigurable decoder.

11. CONCLUSION

The most significant accomplishments for the effort include: (1) the development of novel automated
layout methods for regularly interconnected optical circuits; (2) the development of an interactive
design tool and supporting methods for designing circuits interactively for both regular and irregular
interconnects; (3) the creation of two methods for bypassing faults in optical device arrays; (4) the
discovery and characterization of functional locality in ordinary computer programs, which is
applied to hardware caching; (5) the creation of a trade-off study involving optical interconnects and
architectural complexity; and (6) the development of a novel method of optical spot array generation
and interconnection. A transfer of technology took place to Rome Laboratory for our work in
birefringent interconnects and spot-array generation, which resulted in one of two patent disclosures
for the effort.

A few of the lessons learned during the course of the effort are: (1) Regular interconnects, such as
crossovers, can be maintained at every level of a computer architecture, from the logic gates up to
the system level; (2) The expense of maintaining strict regularity can introduce significant cost in gate
count. It appears from initial studies that a few irregular connections placed in selected positions in
a circuit can have a significant impact on the size of the circuit being designed; (3) As an alternative,
a greater fan-out than two, such as four, can have a significant impact on reducing circuit depth. A
superlinear improvement is sometimes possible for the regular interconnect model, since the
increased fan-out eliminates problems associated with blocking. (4) Irregular interconnects can be
achieved with diffractive optical elements. However, our studies show that there is a trade-off
between lens size and propagation distance. A completely irregular interconnect will effectively
require a separate imaging system for each optical signal, and the resulting propagation distance may
not allow for steep angles of incidence, thus complicating the realization of a completely irregular
interconnect. A mix of regular and irregular interconnects appears to be a reasonable compromise
when the trade-offs among the optics and architecture are considered together. One rule of thumb that
we consider is to use regular interconnects for clusters of signals, 16 x 16 for instance, and then use
irregular interconnects between clusters. In this way, propagation distance can be increased while
simultaneously reducing the circuit depth that is attributed to the regularity.


